Shifted inverse curvature flows in hyperbolic space

نویسندگان

چکیده

We introduce the shifted inverse curvature flow in hyperbolic space. This is a family of hypersurfaces space expanding by $$F^{-p}$$ with positive power p for smooth, symmetric, strictly increasing and 1-homogeneous function F principal curvatures some concavity properties. study maximal existence asymptotical behavior horo-convex hypersurfaces. In particular, $$0<p\le 1$$ we show that limiting shape solution always round as time approached. contrast to (non-shifted) flow, Hung Wang (Calc Var Part Differ Equ 54(1):119–126, 2015) constructed counterexample not necessarily round.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized inverse mean curvature flows in spacetime

Motivated by the conjectured Penrose inequality and by the work of Hawking, Geroch, Huisken and Ilmanen in the null and the Riemannian case, we examine necessary conditions on flows of two-surfaces in spacetime under which the Hawking quasilocal mass is monotone. We focus on a subclass of such flows which we call uniformly expanding, which can be considered for null as well as for spacelike dir...

متن کامل

Total Curvature of Complete Surfaces in Hyperbolic Space

We prove a Gauss-Bonnet formula for the extrinsic curvature of complete surfaces in hyperbolic space under some assumptions on the asymptotic behaviour.

متن کامل

Curvature Flow of Complete Convex Hypersurfaces in Hyperbolic Space

We investigate the existence, convergence and uniqueness of modified general curvature flow (MGCF) of convex hypersurfaces in hyperbolic space with a prescribed asymptotic boundary.

متن کامل

Curvature Flow of Complete Hypersurfaces in Hyperbolic Space

In this paper we continue our study of finding the curvature flow of complete hypersurfaces in hyperbolic space with a prescribed asymptotic boundary at infinity. Our main results are proved by deriving a priori global gradient estimates and C2 estimates.

متن کامل

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form

Let M be a complete hypersurface with constant normalized scalar curvature R in a hyperbolic space form H. We prove that if R̄ = R + 1 ≥ 0 and the norm square |h| of the second fundamental form of M satisfies nR̄ ≤ sup |h| ≤ n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], then either sup |h| = nR̄ and M is a totally umbilical hypersurface; or sup |h| = n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], and M i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2023

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-023-02429-2